工量具行业专业级电商平台

数控刀具的选择方法

发布日期:2015-10-27 08:37

 刀具的选择是数控加工工艺中的重要内容之一,不仅影响机床的加工效率,而且直接影响零件的加工质量。由于数控机床的主轴转速及范围远远高于普通机床,而且主轴输出功率较大,因此与传统加工方法相比,对数控加工刀具的提出了更高的要求,包括精度高、强度大、刚性好、耐用度高,而且要求尺寸稳定,安装调整方便。这就要求刀具的结构合理、几何参数标准化、系列化。数控刀具是提高加工效率的先决条件之一,它的选用取决于被加工零件的几何形状、材料状态、夹具和机床选用刀具的刚性。应考虑以下方面:

 

  (1)根据零件材料的切削性能选择刀具。如车或铣高强度钢、钛合金、不锈钢零件,建议选择耐磨性较好的可转位硬质合金刀具。

 

  (2)根据零件的加工阶段选择刀具。即粗加工阶段以去除余量为主,应选择刚性较好、精度较低的刀具,半精加工、精加工阶段以保证零件的加工精度和产品质量为主,应选择耐用度高、精度较高的刀具,粗加工阶段所用刀具的精度最低、而精加工阶段所用刀具的精度最高。如果粗、精加工选择相同的刀具,建议粗加工时选用精加工淘汰下来的刀具,因为精加工淘汰的刀具磨损情况大多为刃部轻微磨损,涂层磨损修光,继续使用会影响精加工的加工质量,但对粗加工的影响较小。

 

  (3)根据加工区域的特点选择刀具和几何参数。在零件结构允许的情况下应选用大直径、长径比值小的刀具;切削薄壁、超薄壁零件的过中心铣刀端刃应有足够的向心角,以减少刀具和切削部位的切削力。加工铝、铜等较软材料零件时应选择前角稍大一些的立铣刀,齿数也不要超过4齿。

 

  选取刀具时,要使刀具的尺寸与被加工工件的表面尺寸相适应。生产中,平面零件周边轮廓的加工,常采用立铣刀;铣削平面时,应选硬质合金刀片铣刀;加工凸台、凹槽时,选高速钢立铣刀;加工毛坯表面或粗加工孔时,可选取镶硬质合金刀片的玉米铣刀;对一些立体型面和变斜角轮廓外形的加工,常采用球头铣刀、环形铣刀、锥形铣刀和盘形铣刀。

 

  在进行自由曲面加工时,由于球头刀具的端部切削速度为零,因此,为保证加工精度,切削行距一般很小,故球头铣刀适用于曲面的精加工。而端铣刀无论是在表面加工质量上还是在加工效率上都远远优于球头铣刀,因此,在确保零件加工不过切的前提下,粗加工和半精加工曲面时,尽量选择端铣刀。另外,刀具的耐用度和精度与刀具价格关系极大,必须引起注意的是,在大多数情况下,选择好的刀具虽然增加了刀具成本,但由此带来的加工质量和加工效率的提高,则可以使整个加工成本大大降低。

 

  在加工中心上,所有刀具全都预先装在刀库里,通过数控程序的选刀和换刀指令进行相应的换刀动作。必须选用适合机床刀具系统规格的相应标准刀柄,以便数控加工用刀具能够迅速、准确地安装到机床主轴上或返回刀库。编程人员应能够了解机床所用刀柄的结构尺寸、调整方法以及调整范围等方面的内容,以保证在编程时确定刀具的径向和轴向尺寸,合理安排刀具的排列顺序。

 

 特征造型不仅能表达机械零件的底层几何信息,而且可从具有工程意义的较高层次上对产品进行表达和建模,有效支持产品整个生命周期内的各个环节。因此,特征造型是将设计与质量计算、工程分析、数控加工编程等环节联结起来的纽带。

 

大多数特征造型系统均采用边界表示法(B-rep)和构造几何法(CSG)相结合的方法来描述零件的形状特征。边界表示法主要用于描述构成几何体的几何元素(顶点、线、面等)之间的拓扑关系,并可辅助用户选取特定的几何元素;构造几何法则通过树形操作完成实体体素的拼合,形成最终设计特征。本文主要讨论构造几何法的扩展及其在数控镗刀特征造型系统中的应用。该方法对于其它数控刀具同样适用。

 

2 辅助面切割法的引入

 

    由于数控刀具的形体为不规则的棱柱体,而构造几何法采用的拼合体素为规则形体,因此,单纯采用构造几何法对数控刀具进行造型,既不灵活效率又低。如引入辅助面切割法,则可简化造型过程,提高造型效率,在某些情况下还可降低造型难度。试举二例:

 

1) 构造原始长方体;

 

2) 构造直棱柱Ⅱ,并从原始长方体中减去直棱柱Ⅱ,得到中间形体;

 

3) 由于棱柱Ⅲ为非直棱柱,经处理补齐为直棱柱,再从第2步所得中间形体中减去处理后的直棱柱。

 

    由上述步骤可见,为得到形体Ⅰ,需构造三个体素、进行两步拼合才能实现,并且还需对不规则体素进行处理,形成体积比原体素大的规则体素后方能拼合,过程复杂。

 

   若采用辅助面切割法解决上述问题,则只需构造原始长方体和辅助面P,然后用 P面切割原始长方体,即可达到目的。

 

    为获得形体Ⅰ,采用构造几何法需构造三个体素,即原始长方体、直棱柱Ⅱ和Ⅲ,且直棱柱Ⅱ和Ⅲ中总有一个直棱柱需被构造为比实际需要的体素大,这也增加了不必要的存储空间。并且,如要保证图2Pt点的空间位置,则需提高原始长方体和直棱柱Ⅲ的造型要求,精确设计原始体素的尺寸,才能得到符合要求的Pt点。

 

    若采用辅助面切割法,为获得形体Ⅰ,则只须构造一个基本体素——原始长方体,然后构造切割辅助面P1P2,如需保证Pt点的位置,只要保证P1P2平面均过Pt点即可,而这一点不难做到。

 

    为叙述方便和清楚,以上所举二例都是经化简的模型,实际造型中所遇到的问题要复杂得多,而且用构造几何法构造一个空间形体可以经由不同的拼合路径。与所有拼合方法相比,采用辅助面切割法都具有明显的优越性。

 

3 辅助面切割法的实现

 

    虽然采用辅助面切割法可大大简化构造几何法,但并非在所有情况下都能实现。如图3所示情况,为获得形体Ⅰ,必须在原始长方体上减掉长方体Ⅱ,在此情况下辅助面切割法就无法使用。因此,辅助面切割法只能作为构造几何法的补充和扩展,而无法完全取代构造几何法。

 

辅助面切割法的应用条件为:

 

1) 构造几何法中两体素必须作差拼合运算;

 

2) 拼合形成的最终形体必须位于辅助面一侧。

 

    因此,为了最大限度地应用辅助面切割法,在形成最终形体时,应尽量采用差拼合方法。凡是能经机械加工得到的零件,均可通过精心设计基本体素而以差拼合方法实现其特征造型。

 

    实现辅助面切割法的关键是辅助面的构造及体素被切割后两部分的取舍。

 

    平面的几何定义为:通过空间一固定点且垂直于一空间向量的曲面。即由一空间固定点和一空间向量可唯一地确定一个平面,其中固定点位于平面上,空间向量为平面的法向量。因此,平面可由其点法式方程确定,即

 

A(X-X0)+B(Y-Y0)+C( Z-Z0)=0 (1)

 

其中 P0(X0Y0Z0)为一固定点,而V={ABC}为平面的法向量。

 

    根据定义,可用平面上一点和平面的法向量来构造平面。在某些情况下,如平面的法向量不易确定,但能较容易地找到平面上的三个点P0P1P2,则可通过构造向量V1=P0P1V2=P0P2,然后求V1V2的叉积而得到平面的法向量V0=V1×V2

 

辅助面构造完成后,切割后的形体如何取舍?在此作如下规定:凡切割后得到的两个形体,位于法向量正方向的形体为所需形体,位于法向量负方向的形体为舍弃形体。在构造平面时,一定要仔细处理法向量的方向,使其指向所需形体。

 

4 数控刀具造型设计实例

 

    构造几何法是实体造型中广泛应用的方法,但单纯采用构造几何法进行造型设计有时难度相当大。本文提出应用辅助面切割法对构造几何法进行扩展并应用于数控刀具的特征造型过程,大大降低了造型设计的复杂程度和难度,具有较好的应用价值。

 

 

1.数牲加工常用刀具的种类及特点

 

    数控加工刀具必须适应数控机床高速、高效和自动化程度高的特点,一般应包括通用刀具、通用连接刀柄及少量专用刀柄。刀柄要联接刀具并装在机床动力头上,因此已逐渐标准化和系列化。

 

21数控刀具的分类有多种方法

 

a.根据刀具结构可分为

 

(1)整体式;

 

(2)镶嵌式,采用焊接或机夹式联接,机夹式又可分为不转位和可转位两种;

 

(3)特殊型式,如复合式刀具、减震式刀具等。

 

b.根据制造刀具所用的材料可分为:

 

(1)高速钢刀具;

 

(2)硬质合金刀具;

 

(3)金刚石刀具;

 

(4)其他材料刀具,如立方氮化硼刀具、陶瓷刀具等。

 

c.从切削工艺上可分为:

 

(1)车削刀具,分外圆、内孔、螺纹、切割刀具等多种;

 

(2)钻削刀具,包括钻头、铰刀、丝锥等;

 

(3)镗削刀具;

 

(4)铣削刀具等。

 

   为了适应数控机床对刀具耐用、稳定、易调、可换等的要求,近几年机夹式可转位刀具得到广泛的应用,在数量上达到整个数控刀具的30%一40%,金属切除量占总数的80%~90%。

 

22数控刀具与普通机床上所用的刀具相比,有许多不同的要求,主要有以下特点:

 

(1)刚性好(尤其是粗加工刀具)、精度高、抗振及热变形小;互换性好,便于快速换刀;

 

(2)寿命高,切削性能稳定、可靠;

 

(3)刀具的尺寸便于调整,以减少换刀调整时间;

 

(4)刀具应能可靠地断屑或卷屑,以利于切屑的排除;

 

(5)列化标准化以利于编程和刀具管理。

 

2.数控加工刀具的选择

 

    刀具的选择是在数控编程的人机交互状态下进行的。应根据机床的加工能力、工件材科的性能、加工工序切削用量以及其它相关因素正确选用刀具及刀柄。刀具选择总的原则是:安装调整方便、刚性好、耐用度和精度高。在满足加工要求的前提下,尽量选择较短的刀柄,以提高刀具加工的刚性。

 

(1)选取刀具时,要使刀具的尺寸与被加工工件的表面尺寸相适应。生产中,平面零件周边轮廓的加工,常采用立铣刀;铣削平面时,应选硬质合金刀片铣刀,加工凸台、凹槽时,选高速钢立铣刀;加工毛坯表面或粗加工孔时,可选取镶硬质合金刀片的玉米铣刀;对一些立体型面和变斜角轮廓外形的加工,常采用球头铣刀、环形铣刀、锥形铣刀和盘形铣刀。

 

(2)在进行自由曲面(模具)加工时,由于球头刀具的端部切削速度为零,因此,为保证加工精度,切削行距一般采用顶端密距,故球头常用于曲面的精加工。而平头刀具在表面加工质量和切削效率方面都优于球头刀,因此,只要在保证不过切的前提下,无论是曲面的粗加工还是精加工,都应优先选择平头刀。另外,刀具的耐用度和精度与刀具价格关系极大,必须引起注意的是,在大多数情况下,选择好的刀具虽然增加了刀具成本,但由此带来的加工质量和加工效率的提高,则可以使整个加工成本大大降低。

 

(3)在加工中心上,各种刀具分别装在刀库上,按程序规定随时进行选刀和按刀动作。因此必须采用标准刀柄,以便使钻、镗、扩、铣削等工序用的标准刀具迅速、准确地装到机床主轴或刀库上去。编程人员应了解机床上所用刀柄的结构尺寸、调整方法以及调整范围,以便在编程时确定刀具的径向和轴向尺寸。目前我国的加工中心采用TSG工具系统,其刀柄有直柄(3种规格)和锥柄(4种规格)2种,共包括16种不同用途的刀柄。

 

(4)在经济型数控机床的加工过程中,由于刀具的刃磨、测量和更换多为人工手动进行,占用辅助时间较长,因此,必须合理安排刀具的排列顺序。一般应遵循以下原则:①尽量减少刀具数量;②一把刀具装夹后,应完成其所能进行的所有加工步骤;粗精加工的刀具应分开使用,即使是相同尺寸规格的刀具;④先铣后钻;⑤先进行曲面精加工,后进行二维轮廓精加工;⑥在可能的情况下,应尽可能利用数控机床的自动换刀功能,以提高生产效率等。

 

3.加工过程中切削用量的确定

 

    合理选择切削用量的原则是:粗加工时,一般以提高生产率为主,但也应考虑经济性和加工成本;半精加工和精加工时,应在保证加工质量的前提下,兼顾切削效率、经济性和加工成本。具体数值应根据机床说明书切削用量手册,并结合经验而定。

 

具体要考虑以下几个因素:

 

(1)切削深度ap。在机床、工件和刀具刚度允许的情况下,ap就等于加工余量,这是提高生产率的一个有效措施。为了保证零件的加工精度和表面粗糙度,一般应留一定的余量进行精加工。数控机床的精加工余量可略小于普通机床。

 

    切削宽度L。一般L与刀具直径d成正比,与切削深度成反比。经济型数控机床的加工过程中,一般L的取值范围为L=(0.60.9)d

 

(2)切削速度V。提高V也是提高生产率的一个措施,但v与刀具耐用度的关系比较密切。随着v的增大,刀具耐用度急剧下降,故v的选择主要取决于刀具耐用度。另外,切削速度与加工材料也有很大关系,例如用立铣刀铣削合金刚30CrNi2MoVA时,V可采用8m/min左右;而用同样的立铣刀铣削铝合金时,V可选200m/min以上。

 

    主轴转速n(r/min)。主轴转速一般根据切削速度v来选定。计算公式为:V=pnd/1000。数控机床的控制面板上一般备有主轴转速修调(倍率)开关,可在加工过程中对主轴转速进行整倍数调整。

 

(3)进给速度VfVf应根据零件的加工精度和表面粗糙度要求以及刀具和工件材料来选择。Vf的增加也可以提高生产效率。加工表面粗糙度要求低时,Vf可选择得大些。在加工过程中,Vf也可通过机床控制面板上的修调开关进行人工调整,但是最大进给速度要受到设备刚度和进给系统性能等的限制。

 

结束语

 

    随着数控机床在生产实际中的广泛应用,量化生产线的形成,数控编程已经成为数控加工中的关键问题之一。在数控程序的编制过程中,要在人机交互状态下即时选择刀具和确定切削用量。因此,编程人员必须熟悉刀具的选择方法和切削用量的确定原则,从而保证零件的加工质量和加工效率,充分发挥数控机床的优点,提高企业的经济效益和生产水平。

 

 

数控加工刀具可分为常规刀具和模块化刀具两大类。模块化刀具是发展方向。发展模块化刀具的主要优点:减少换刀停机时间,提高生产加工时间;加快换刀及安装时间,提高小批量生产的经济性;提高刀具的标准化和合理化的程度;提高刀具的管理及柔性加工的水平;扩大刀具的利用率,充分发挥刀具的性能;有效地消除刀具测量工作的中断现象,可采用线外预调。事实上,由于模块刀具的发展,数控刀具已形成了三大系统,即车削刀具系统、钻削刀具系统和镗铣刀具系统。

 

(1)从结构上可分为 ①整体式 ②镶嵌式 可分为焊接式和机夹式。机夹式根据刀体结构不同,分为可转位和不转位; ③减振式 当刀具的工作臂长与直径之比较大时,为了减少刀具的振动,提高加工精度,多采用此类刀具; ④内冷式 切削液通过刀体内部由喷孔喷射到刀具的切削刃部; ⑤特殊型式 如复合刀具、可逆攻螺纹刀具等。

 

(2)从制造所采用的材料上可分为 ①高速钢刀具 高速钢通常是型坯材料,韧性较硬质合金好,硬度、耐磨性和红硬性较硬质合金差,不适于切削硬度较高的材料,也不适于进行高速切削。高速钢刀具使用前需生产者自行刃磨,且刃磨方便,适于各种特殊需要的非标准刀具。 ②硬质合金刀具 硬质合金刀片切削性能优异,在数控车削中被广泛使用。硬质合金刀片有标准规格系列产品,具体技术参数和切削性能由刀具生产厂家提供。 硬质合金刀片按国际标准分为三大类:P类,M类,K类。 P类——适于加工钢、长屑可锻铸铁(相当于我国的YT类) M类——适于加工奥氏体不锈钢、铸铁、高锰钢、合金铸铁等(相当于我国的YW类) M-S类——适于加工耐热合金和钛合金 K类——适于加工铸铁、冷硬铸铁、短屑可锻铸铁、非钛合金(相当于我国的YG类) K-N类——适于加工铝、非铁合金 K-H类——适于加工淬硬材料 ③陶瓷刀具 ④立方氮化硼刀具 ⑤金刚石刀具

 

(3)从切削工艺上可分为 ①车削刀具 分外圆、内孔、外螺纹、内螺纹,切槽、切端面、切端面环槽、切断等。 数控车床一般使用标准的机夹可转位刀具。机夹可转位刀具的刀片和刀体都有标准,刀片材料采用硬质合金、涂层硬质合金以及高速钢。 数控车床机夹可转位刀具类型有外圆刀具、外螺纹刀具、内圆刀具、内螺纹刀具、切断刀具、孔加工刀具(包括中心孔钻头、镗刀、丝锥等)。 机夹可转位刀具夹固不重磨刀片时通常采用螺钉、螺钉压板、杠销或楔块等结构。 常规车削刀具为长条形方刀体或圆柱刀杆。 方形刀体一般用槽形刀架螺钉紧固方式固定。圆柱刀杆是用套筒螺钉紧固方式固定。它 们与机床刀盘之间的联接是通过槽形刀架和套筒接杆来联接的。在模块化车削工具系统中,刀盘的联接以齿条式柄体联接为多,而刀头与刀体的联接是“插入快换式系统”。它既可以用于外圆车削又可用于内孔镗削,也适用于车削中心的自动换刀系统。 数控车床使用的刀具从切削方式上分为三类:圆表面切削刀具、端面切削刀具和中心孔类刀具。 ②钻削刀具 分小孔、短孔、深孔、攻螺纹、铰孔等。 钻削刀具可用于数控车床、车削中心,又可用于数控镗铣床和加工中心。因此它的结构和联接形式有多种。有直柄、直柄螺钉紧定、锥柄、螺纹联接、模块式联接(圆锥或圆柱联接)等多种。 ③镗削刀具 分粗镗、精镗等刀具。 镗刀从结构上可分为整体式镗刀柄、模块式镗刀柄和镗头类。从加工工艺要求上可分为粗镗刀和精镗刀。 ④铣削刀具 分面铣、立铣、三面刃铣等刀具。 ●面铣刀(也叫端铣刀) 面铣刀的圆周表面和端面上都有切削刃,端部切削刃为副切削刃。面铣刀多制成套式镶齿结构和刀片机夹可转位结构,刀齿材料为高速钢或硬质合金,刀体为40Cr ●立铣刀 立铣刀是数控机床上用得最多的一种铣刀。立铣刀的圆柱表面和端面上都有切削刃,它们可同时进行切削,也可单独进行切削。结构有整体式和机夹式等,高速钢和硬质合金是铣刀工作部分的常用材料。 ●模具铣刀 模具铣刀由立铣刀发展而成,可分为圆锥形立铣刀、圆柱形球头立铣刀和 圆锥形球头立铣刀三种,其柄部有直柄、削平型直柄和莫氏锥柄。它的结构特点是球头或端面上布满切削刃,圆周刃与球头刃圆弧连接,可以作径向和轴向进给。铣刀工作部分用高速钢或硬质合金制造。 ●键槽铣刀 ●鼓形铣刀 ●成形铣刀

 

4)特殊型刀具 特殊型刀具有带柄自紧夹头、强力弹簧夹头刀柄、可逆式(自动反向)攻螺纹夹头刀柄、增速夹头刀柄、复合刀具和接杆类等。 2 数控加工刀具的特点 为了达到高效、多能、快换、经济的目的,数控加工刀具与普通金属切削刀具相比应具 有以下特点: ●刀片及刀柄高度的通用化、规格化、系列化。 ●刀片或刀具的耐用度及经济寿命指标的合理性。 ●刀具或刀片几何参数和切削参数的规范化、典型化。 ●刀片或刀具材料及切削参数与被加工材料之间应相匹配。 ●刀具应具有较高的精度,包括刀具的形状精度、刀片及刀柄对机床主轴的相对位置 精度、刀片及刀柄的转位及拆装的重复精度。 ●刀柄的强度要高、刚性及耐磨性要好。 ●刀柄或工具系统的装机重量有限度。 ●刀片及刀柄切入的位置和方向有要求。 ●刀片、刀柄的定位基准及自动换刀系统要优化。 数控机床上用的刀具应满足安装调整方便、刚性好、精度高、耐用度好等要求。

 

 数控机床和加工中心用刀具(简称数控刀具)在国外发展很快,品种规格已形成系列。我国对数控刀具的研究开发起步较晚,数控刀具的开发与生产成为我国工具行业的薄弱环节,数控刀具的落后已成为影响国产和进口数控机床充分发挥作用的主要障碍之一。

 

   目前国外设计数控刀具的方式基本上是通过直接调用已有的设计结果或经过局部修改而形成新的品种或规格。而国内企业(包括中国第一汽车制造厂)在数控刀具设计中则大多是在商用CAD(多为AutoCAD)软件平台上由设计人员进行交互式绘图。由于交互式绘图很难利用已有的设计结果,劳动强度大,设计效率低,难以满足实际生产需要。因此,研究开发先进的数控刀具CAD/CAM技术,对于提高数控刀具设计、制造的质量和效率十分必要。

 

    CAD技术的发展过程中,参数化技术的出现是一次重要的革命。该技术以约束造型为核心,允许工程设计人员以尺寸驱动的方式实现对设计结果的修改,非常适合于结构类似的系列化产品设计。

 

    本文以数控镗刀为例,研究参数化设计的实现途径和方法。其它数控刀具的设计方法与其类似。

 

2 数控镗刀的产品模型

 

    为了在计算机上实现数控镗刀的参数化设计,建立合适的产品模型十分关键。数控镗刀的产品模型中应包括刀片、刀杆、刀片夹紧装置等。对于较复杂的零件如刀杆,为便于模型的实现及管理,可将其进一步分解为头部、杆部两个几何体。在设计中,刀具零部件均以几何形状的形式来描述。

 

    构成镗刀每一部分的几何体都由结构约束、图素集和参数集组成。图素集为构成几何体的基本几何元素,如点、线段、圆弧、多边形等。为提高软件的运行效率,多采用封闭多边形来定义几何体,以减少图素的数量。结构约束用于限定几何体的结构,如长方形的相对边互相平行、相邻边互相垂直;参数集用于确定几何体的大小,如长方形的边长、圆()的半径等。由于相邻图素或在空间具有共同位置约束或方向约束的图素之间应具有共用的参数集,为减少数据冗余和避免图素之间出现不合理的拼合现象,构造了总参数集,确定各几何体的参数集都是总参数集的子集,各子集之间若交集非空,则表示它们之间存在邻接关系或位置方向关系。

 

3 几何体的参数化造型

 

     实现几何体的参数化造型和确定参数集是设计的关键步骤。这两个步骤一旦完成,整个镗刀的设计就基本完成了。下面首先讨论几何体的参数化造型。

 

    刀杆头部几何形状,其图素集包括刀片槽图素Ⅱ、螺钉孔图素、压板槽图素Ⅰ和头部外轮廓图素。参数化设计过程就是在满足一定约束条件下确定特征点位置的过程。对于图2b中的头部外轮廓图素,设计中将结构约束P0点、水平线P0P3P0P1P0P3固定,将Kr、α、β作为驱动其结构变化的参数,将LmB作为驱动其大小变化的参数(宽度B受刀杆宽度的限制,属于拼合约束)。当头部外轮廓图素确定后,根据刀片尺寸及其与头部的装配位置即可确定刀片槽图素Ⅱ,然后按照压板尺寸及其与刀片槽图素Ⅱ的相对位置要求确定螺钉孔图素和压板槽图素Ⅰ。确定图2b中特征点的关键是确定P2点,如果确定了P2点相对于P0点的坐标(即图中的Lm),则一方面刀片槽图素Ⅱ、螺钉孔图素和压板槽图素Ⅰ被确定,另一方面P3P4以及P5P1也随之被确定。P6点是考虑加工工艺性而设计的铣削让刀圆弧的圆心,其位置随着刀片槽图素Ⅱ的确定而确定。

 

    用于计算P2点俯视图坐标的镗刀刀杆头部示意图,由图可见,P2点与刀尖点P有关。P点的位置由切削要求决定,刀片厚度h为已知值。因此,当刀片的安装位置确定后,图中的D值便已确定。根据已知的D值、h值和主偏角Kr的大小,即可确定P2点的空间坐标。

 

    下面详细讨论确定P2点坐标的算法。为了计算P2点的坐标,建立两个坐标原点重合的局部坐标系(注:为计算方便,坐标轴方向的选取与刀具计算用坐标系的坐标轴方向不一致)O-XYZO-XqYqZq,其中O-XYZ为镗刀图形的投影坐标系,而O-XqYqZq建立在前刀面上,其坐标轴与加工前刀面时使用的坐标系的坐标轴对应平行(见图3)。因此,两个坐标系之间具有如下关系:将O-XYZ坐标系绕X轴旋转角度gp(切深方向前角),使Y轴与Yq轴重合,再绕Yq轴旋转角度y,即得到坐标系O-XqYqZqy角与gf(进给方向前角)和切深前角gp的关系为

 

tgy=tggf cosgp

 

    为简化计算过程,使P0点的XY坐标为零,即位于O点正下方(为便于观察,图3中对坐标系的位置进行了平移),同时使P点的Z坐标为零。在坐标系O-XqYqZq中,P2(X2q,Y2q,Z2q)P(Xq,Yq,Zq)的关系为(P2点位于刀片对角线上,不然,D与刀片底边之间的夹角可通过计算获得)

 

X2q=Xq-Dsin(Kt-p/4)

 

Y2q=Yq-Dsin(Kt-p/4)

 

Z2q=Zq-h 2

 

    得到P2点在坐标系O-XqYqZq中的坐标后,即可计算它在俯视图中投影的坐标(XYZ),其中的XY坐标值等于图2b中的mL值。

 

    根据坐标系O-XYZO-XqYqZq之间的关系及坐标旋转公式,可得到(XYZ)(X2qY2qZ2q)之间的关系为

 

X=X2qcosy+(Y2qsingp+Z2qcosgp)siny

 

Y=Y2qcosgp-Z2qsingp

 

Z=(Y2qsingp+Z2qcosgp)cosy-X2qsiny 3

 

    由式(1)(3)即可计算出P2点的坐标(XYZ)。其中XY坐标用于确定俯视图,Z坐标用于绘制主视图。P2点确定后,按前述方法确定其它特征点,即可完成图2b所示镗刀刀杆头部的基本轮廓造型。

 

    同样,整个镗刀刀杆的俯视图、主视图、侧视图及其它辅助视图均可按类似上述刀杆头部的设计过程进行设计。为减少实际设计中的计算量,编制了算法程序,用户只需输入相关参数,即可实现数控刀具的参数化设计。

 

4 参数集的管理

 

    数控刀具种类繁多,参数量庞大。为方便用户使用,我们采用了开放数据库互联(ODBC)技术,用外挂数据库的方式存储常用参数。

 

    在传统的数据库领域,数据库应用程序通常是指在特定的数据库管理系统支持下,用特定的内嵌式查询语言开发的程序。这种数据库程序往往需要一个庞大的数据库管理系统支持,对用户的软、硬件要求较高。ODBC技术则提供了一种新的数据库应用程序实现途径,它建立了一组规范,提供了一组高层应用程序调用接口和一套基于动态链接库的运行支持。用这样一组接口开发的应用程序可利用标准函数和结构化查询语言对数据库进行操作,而不必关心数据源来自何种数据库管理系统,所有的数据库底层操作都可由相应的ODBC驱动程序完成。

 

    ODBC技术中,ODBC驱动程序管理器是ODBC应用程序和数据源之间的桥梁和纽带。ODBC驱动程序管理器、ODBC驱动程序、数据源和ODBC应用程序之间的关系如图4所示。利用ODBC技术将不同种类的镗刀参数作为数据库中的记录存储起来,用户可根据所设计镗刀的种类检索数据库,获取相应的参数集或直接进行尺寸驱动绘图或进行局部修改后实现新产品的设计,由于无需逐个输入参数,使设计过程十分方便、快捷。

 

5 镗刀的编码系统

 

    为便于检索,数据记录采用了标准编码系统。编码第1位代表刀片夹紧方式,第2位代表刀片形状,第3位代表主偏角,第4位代表刀片后角,第5位代表切削方向,第67两位代表刀尖高度,第8位代表镗刀代号,第9位代表镗刀安装方式,第1112两位代表刀片尺寸代码。例如:CSFNR25CA-12代表压板夹紧、正方形刀片、主偏角90°、刀片后角0°、右切、刀尖高度25mm、标准安装方式、刀片边长为12.70mm的镗刀。对于用户在原有设计基础上经修改后设计的新产品,编码时在遵循上述规定的基础上进行了相应调整。例如:用户在编码为CSFNR25CA-12的镗刀设计模板上将主偏角改为93°、刀片边长改为9.525mm,则新镗刀的编码为CSUNR20CA-09

 

6 程序运行框架

 

    新开发的数控刀具参数化设计平台允许用户进行标准设计和基于标准设计的派生式设计。为了便于数据管理,建立了两个数据库:标准数据库用于存放已有的定型设计数据;非标准数据库用于存放用户新的设计数据。相应地提供了两层设计界面,即标准设计界面和非标准设计界面。

 

具体设计步骤如下:

 

1) 确定设计编码

 

    设计编码的确定可采用三种方法:①直接输入法:用户在设计界面上直接输入所设计刀具的编码;②逐项确定法:用户选取刀片夹紧方式、刀片形状、切削方向、刀片后角等项目后,系统自动确定镗刀编码;③列表浏览法:用户通过界面上所提供的编码表,以浏览的方式查找所需编码。为了使用户清楚地知道每种编码所代表的镗刀基本形式,在界面上以预览图的形式提供每种编码所对应的镗刀基本形状。

 

2) 提取设计所需数据

 

    利用列表浏览法确定编码时,首先在标准设计界面的编码列表中浏览,若所需编码不存在,则进入非标准设计界面的编码列表中浏览,若所需编码存在,则用鼠标双击该编码,提取数据后进行步骤(4);若所需编码不存在,则进行步骤(3)。利用其它两种方法确定编码时,可通过编码查询查找数据库中是否存在该编码。首先查询标准数据库,若该编码不存在,再查询非标准数据库,若该编码存在,系统即自动为用户提取数据后进行步骤(4),若该编码不存在,则进行步骤(3)

 

3) 修改参数

 

    对于两个数据库中都不存在的编码,用户可通过交互界面上提供的编码列表选取与所设计产品相似的原有产品设计并提取参数,进行局部参数调整和修改后形成新设计。如果得到满意的结果,则进行编码后存入非标准数据库。

 

4) 绘图

 

    获得所需要的输入参数后,点取绘制图形命令,系统自动进行设计计算,算出图形的驱动尺寸后即可绘出镗刀的装配图和零件图,并标注尺寸、填写标题栏和技术要求,同时给出标准的图纸规格,最后形成完整的工程图纸。

 

7 结语

 

    采用参数化技术开发的数控刀具设计平台可显著提高设计效率,使设计人员从繁重的重复性劳动中解放出来,将更多精力用在创造性设计工作中。

 

 

 所谓刀具选择的经济型原则,是指以增加收入、减少支出为选择刀具的主要原则。

 

    这一原则常常是我们选择刀具最重要的原则之一,只是许多人的认识比较片面,把这个原则的内容狭隘化了,才引出我在以前所论述的“刀具选择的效率原则”等。

 

    我们认识刀具选择的经济性原则,一定要全面地、因地制宜地进行分析。

 

    比如我们前面谈到的效率原则,在加工产能不能达到产量要求时特别重要。尤其是一些企业,实际上存在着一些生产瓶颈,即个别工序的生产能力制约了整个车间、甚至是这个企业的生产能力,这时提高效率就会成为改善生产能力的首选。

 

    但在提高效率的同时,我们依然可以讨论改善经济性。

 

    人们改善经济性的最直接的方法就是降低采购价格。但如果没有技术改进作为基础,单纯的价格下降常常是极其有限的。我知道有些刀具用户为了降低采购价格,不断要求供应商降低价格,但有些价格的下降对于用户也许有着直接或间接的损害。

 

    不久前,我参加一个刀具行业的会议,得知前段时间国内高速钢企业在重要原材料“钨”的价格成倍增长而客户又要求降价的情况下,自行把冶炼的高速钢中的钨含量不断减少,其需求量在硬质合金刀具需求不断增长的条件下也得到增长,而我认为这种“需求”的增长是在材质不断低质化的条件下得到的,这是对刀具制造行业的一种非理性的“提示”。20061127日,中国机床工具工业协会工具分会第五届会员大会在厦门发表了《关于坚决反对在工具生产中以“低合金高速钢”冒充标准高速钢的倡议书》,其目的也是希望能抑制这种虚假的增长。

 

    同时,长期陷入“价格战”的许多国内企业的利润空间由于受到低价的强烈挤压,国内企业的研发资金明显不足。国内刀具企业大多无法向用户提供自己产品的切削参数,有些只是拿国外企业的参数乘个系数了事。这种科研、发展能力缺乏的企业很难为刀具用户提供足够的技术支持,一旦用户的生产突然发生某种情况,他们就会无法提供应急预案,从而危及刀具用户生产过程的稳定性。

 

    因此,我们的经济性不能从这一方面来考虑。

 

    我们的经济性也可以从非纯粹的价格因素来考虑。比如在车削中,许多用户的切削深度并不是很大,那么我们不妨考虑用W型刀片取代C型刀片,以增加50%的刀刃。这时,加工效率、加工程序等都没有改变,但我们的经济性改善了。

 

    类似的例子还有用CN09刀片取代CN12刀片,DN11的刀片取代DN15刀片,用SP06SP09刀片代替SP12刀片等以小代大的方法,用双面刀片代替单面刀片,O(八边形)H(六边形)来代替S(四边形)等。

 

.数牲加工常用刀具的种类及特点

 

    数控加工刀具必须适应数控机床高速、高效和自动化程度高的特点,一般应包括通用刀具、通用连接刀柄及少量专用刀柄。刀柄要联接刀具并装在机床动力头上,因此已逐渐标准化和系列化。

 

21数控刀具的分类有多种方法

 

a.根据刀具结构可分为

 

(1)整体式;

 

(2)镶嵌式,采用焊接或机夹式联接,机夹式又可分为不转位和可转位两种;

 

(3)特殊型式,如复合式刀具、减震式刀具等。

 

b.根据制造刀具所用的材料可分为:

 

(1)高速钢刀具;

 

(2)硬质合金刀具;

 

(3)金刚石刀具;

 

(4)其他材料刀具,如立方氮化硼刀具、陶瓷刀具等。

 

c.从切削工艺上可分为:

 

(1)车削刀具,分外圆、内孔、螺纹、切割刀具等多种;

 

(2)钻削刀具,包括钻头、铰刀、丝锥等;

 

(3)镗削刀具;

 

(4)铣削刀具等。

 

   为了适应数控机床对刀具耐用、稳定、易调、可换等的要求,近几年机夹式可转位刀具得到广泛的应用,在数量上达到整个数控刀具的30%一40%,金属切除量占总数的80%~90%。

 

22数控刀具与普通机床上所用的刀具相比,有许多不同的要求,主要有以下特点:

 

(1)刚性好(尤其是粗加工刀具)、精度高、抗振及热变形小;互换性好,便于快速换刀;

 

(2)寿命高,切削性能稳定、可靠;

 

(3)刀具的尺寸便于调整,以减少换刀调整时间;

 

(4)刀具应能可靠地断屑或卷屑,以利于切屑的排除;

 

(5)列化标准化以利于编程和刀具管理。

 

2.数控加工刀具的选择

 

    刀具的选择是在数控编程的人机交互状态下进行的。应根据机床的加工能力、工件材科的性能、加工工序切削用量以及其它相关因素正确选用刀具及刀柄。刀具选择总的原则是:安装调整方便、刚性好、耐用度和精度高。在满足加工要求的前提下,尽量选择较短的刀柄,以提高刀具加工的刚性。

 

(1)选取刀具时,要使刀具的尺寸与被加工工件的表面尺寸相适应。生产中,平面零件周边轮廓的加工,常采用立铣刀;铣削平面时,应选硬质合金刀片铣刀,加工凸台、凹槽时,选高速钢立铣刀;加工毛坯表面或粗加工孔时,可选取镶硬质合金刀片的玉米铣刀;对一些立体型面和变斜角轮廓外形的加工,常采用球头铣刀、环形铣刀、锥形铣刀和盘形铣刀。

 

(2)在进行自由曲面(模具)加工时,由于球头刀具的端部切削速度为零,因此,为保证加工精度,切削行距一般采用顶端密距,故球头常用于曲面的精加工。而平头刀具在表面加工质量和切削效率方面都优于球头刀,因此,只要在保证不过切的前提下,无论是曲面的粗加工还是精加工,都应优先选择平头刀。另外,刀具的耐用度和精度与刀具价格关系极大,必须引起注意的是,在大多数情况下,选择好的刀具虽然增加了刀具成本,但由此带来的加工质量和加工效率的提高,则可以使整个加工成本大大降低。

 

(3)在加工中心上,各种刀具分别装在刀库上,按程序规定随时进行选刀和按刀动作。因此必须采用标准刀柄,以便使钻、镗、扩、铣削等工序用的标准刀具迅速、准确地装到机床主轴或刀库上去。编程人员应了解机床上所用刀柄的结构尺寸、调整方法以及调整范围,以便在编程时确定刀具的径向和轴向尺寸。目前我国的加工中心采用TSG工具系统,其刀柄有直柄(3种规格)和锥柄(4种规格)2种,共包括16种不同用途的刀柄。

 

(4)在经济型数控机床的加工过程中,由于刀具的刃磨、测量和更换多为人工手动进行,占用辅助时间较长,因此,必须合理安排刀具的排列顺序。一般应遵循以下原则:①尽量减少刀具数量;②一把刀具装夹后,应完成其所能进行的所有加工步骤;粗精加工的刀具应分开使用,即使是相同尺寸规格的刀具;④先铣后钻;⑤先进行曲面精加工,后进行二维轮廓精加工;⑥在可能的情况下,应尽可能利用数控机床的自动换刀功能,以提高生产效率等。

 

3.加工过程中切削用量的确定

 

    合理选择切削用量的原则是:粗加工时,一般以提高生产率为主,但也应考虑经济性和加工成本;半精加工和精加工时,应在保证加工质量的前提下,兼顾切削效率、经济性和加工成本。具体数值应根据机床说明书切削用量手册,并结合经验而定。

 

具体要考虑以下几个因素:

 

(1)切削深度ap。在机床、工件和刀具刚度允许的情况下,ap就等于加工余量,这是提高生产率的一个有效措施。为了保证零件的加工精度和表面粗糙度,一般应留一定的余量进行精加工。数控机床的精加工余量可略小于普通机床。

 

    切削宽度L。一般L与刀具直径d成正比,与切削深度成反比。经济型数控机床的加工过程中,一般L的取值范围为L=(0.60.9)d

 

(2)切削速度V。提高V也是提高生产率的一个措施,但v与刀具耐用度的关系比较密切。随着v的增大,刀具耐用度急剧下降,故v的选择主要取决于刀具耐用度。另外,切削速度与加工材料也有很大关系,例如用立铣刀铣削合金刚30CrNi2MoVA时,V可采用8m/min左右;而用同样的立铣刀铣削铝合金时,V可选200m/min以上。

 

    主轴转速n(r/min)。主轴转速一般根据切削速度v来选定。计算公式为:V=pnd/1000。数控机床的控制面板上一般备有主轴转速修调(倍率)开关,可在加工过程中对主轴转速进行整倍数调整。

 

(3)进给速度VfVf应根据零件的加工精度和表面粗糙度要求以及刀具和工件材料来选择。Vf的增加也可以提高生产效率。加工表面粗糙度要求低时,Vf可选择得大些。在加工过程中,Vf也可通过机床控制面板上的修调开关进行人工调整,但是最大进给速度要受到设备刚度和进给系统性能等的限制。